10,578 research outputs found

    Numeral Understanding in Financial Tweets for Fine-grained Crowd-based Forecasting

    Full text link
    Numerals that contain much information in financial documents are crucial for financial decision making. They play different roles in financial analysis processes. This paper is aimed at understanding the meanings of numerals in financial tweets for fine-grained crowd-based forecasting. We propose a taxonomy that classifies the numerals in financial tweets into 7 categories, and further extend some of these categories into several subcategories. Neural network-based models with word and character-level encoders are proposed for 7-way classification and 17-way classification. We perform backtest to confirm the effectiveness of the numeric opinions made by the crowd. This work is the first attempt to understand numerals in financial social media data, and we provide the first comparison of fine-grained opinion of individual investors and analysts based on their forecast price. The numeral corpus used in our experiments, called FinNum 1.0 , is available for research purposes.Comment: Accepted by the 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2018), Santiago, Chil

    NumHG: A Dataset for Number-Focused Headline Generation

    Full text link
    Headline generation, a key task in abstractive summarization, strives to condense a full-length article into a succinct, single line of text. Notably, while contemporary encoder-decoder models excel based on the ROUGE metric, they often falter when it comes to the precise generation of numerals in headlines. We identify the lack of datasets providing fine-grained annotations for accurate numeral generation as a major roadblock. To address this, we introduce a new dataset, the NumHG, and provide over 27,000 annotated numeral-rich news articles for detailed investigation. Further, we evaluate five well-performing models from previous headline generation tasks using human evaluation in terms of numerical accuracy, reasonableness, and readability. Our study reveals a need for improvement in numerical accuracy, demonstrating the potential of the NumHG dataset to drive progress in number-focused headline generation and stimulate further discussions in numeral-focused text generation.Comment: NumEval@SemEval-2024 Datase

    A Stage For Social Comparison — The Value Of Information In Virtual Communities

    Get PDF
    Virtual communities have become significant applica tions for the Internet. Previous studies usually treated virtual communities as places for people to share and exchange information and did not explain the social value of comm unities well. This study treated a virtual community as a stage on which people can present themselves to other users while others can see the shows of people to satisfy their social comparison needs. Based on social co mparison theory, this paper investigated the effects of upward social comparison in virtual communiti es on user satisfaction through the mediations of perceived inspiration and self-improvement. Furthermore, these effects were moderated by individual social comparison orientation. The results of this study should enhance the understanding of the nature and the social value of information in virtual communities

    Intrinsic Alignment in redMaPPer clusters -- II. Radial alignment of satellites toward cluster centers

    Full text link
    We study the orientations of satellite galaxies in redMaPPer clusters constructed from the Sloan Digital Sky Survey at 0.1<z<0.350.1<z<0.35 to determine whether there is any preferential tendency for satellites to point radially toward cluster centers. We analyze the satellite alignment (SA) signal based on three shape measurement methods (re-Gaussianization, de Vaucouleurs, and isophotal shapes), which trace galaxy light profiles at different radii. The measured SA signal depends on these shape measurement methods. We detect the strongest SA signal in isophotal shapes, followed by de Vaucouleurs shapes. While no net SA signal is detected using re-Gaussianization shapes across the entire sample, the observed SA signal reaches a statistically significant level when limiting to a subsample of higher luminosity satellites. We further investigate the impact of noise, systematics, and real physical isophotal twisting effects in the comparison between the SA signal detected via different shape measurement methods. Unlike previous studies, which only consider the dependence of SA on a few parameters, here we explore a total of 17 galaxy and cluster properties, using a statistical model averaging technique to naturally account for parameter correlations and identify significant SA predictors. We find that the measured SA signal is strongest for satellites with the following characteristics: higher luminosity, smaller distance to the cluster center, rounder in shape, higher bulge fraction, and distributed preferentially along the major axis directions of their centrals. Finally, we provide physical explanations for the identified dependences, and discuss the connection to theories of SA.Comment: 25 pages, 16 figures, 7 tables, accepted to MNRAS. Main statistical analysis tool changed, with the results remain simila
    • …
    corecore